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Abstract

An analysis is performed to study the effect of the Buoyancy force and thermal radiation in MHD boundary layer visco-elastic fl
over continuously moving stretching surface embedded in a porous medium. The following cases of surface conditions are studie
(i) a surface with prescribed wall temperature and (ii) a surface with prescribed heat flux. Numerical calculations have been carri
various values of non-dimensional physical parameters, and tabulated results for Skin friction coefficient and Nusselt number, are
and discussed.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Boundary layer flow on a moving continuous surface
an important type of flow occurring in a number of en
neering processes. Aerodynamic extrusion of plastic sh
cooling of metallic sheets in a cooling bath, which would
in the form of an electrolyte, crystal growing, the boun
ary layer along a liquid film in condensation process a
polymer sheet extruded continuously from a die are the p
tical applications of moving surfaces and also the mate
manufactured by extrusion processes and heat treated
rials travelling between a feed roll and wind up roll or on
conveyer belt possesses the characteristics of a moving
tinuous surfaces.

In 1961, Sakiadis [1,2] initiated the study of the bound
layer flow over a continuous solid surface moving with co
stant speed. Tsou et al. [3] who investigated the heat tr
fer effects of moving solid surface having constant veloc
and temperature. In 1966, Erickson et al. [4] considered
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study of heat and mass transfer in the laminar boundary l
flow of moving flat surface with constant surface veloc
and temperature considering the effect of suction/inject
Soundalgekar and Ramanamurthy [5] investigated the
stant surface velocity case with power law temperature v
ation.

There are various applications in which significant te
perature differences between the body surface and the
bient fluid exist. It is usually assumed that the sheet is in
tensible, but in some different situations like in the polym
industry in which it is necessary to deal with a stretch
plastic sheet as mentioned by Crane [6]. Chen and Cha
have examined the heat transfer behaviours in this flow,
sidering the effect of suction and injection where the bou
ary surface is maintained with variable temperature. Gu
and Gupta [8] have examined the similar type of probl
in hydromagnetic fluid considering the uniform temperat
of the boundary sheet. Considering the effect of tempera
difference between the surface and ambient fluid some w
have been carried out (Vajravelu and Rollins [9], Vajrav
and Nayfeh [10]) on the flow and heat transfer introduc

temperature dependent heat source/sink.
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Nomenclature

x, y distance along and perpendicular to the surface,
respectively

u,v components of velocities along and
perpendicular to the surface, respectively

k1 visco-elastic parameter
k2 permeability parameter
B0 magnetic induction
Cp specific heat at constant pressure
g acceleration due to gravity
K thermal conductivity
Mn magnetic field parameter
Nu Nusselt number
Pr Prandtl number

Gr Grashof number
T temperature

Greek symbols

η dimensionless normal distance
θ dimensionless temperature
α heat source/sink parameter
σ fluid electrical conductivity
ρ fluid density
γ fluid kinematic viscosity
µ fluid dynamic viscosity
τ Skin friction coefficient
ifi-
body
ces
nce
ore
on-
ion.
ric
ious
em-
13]
ith
m-

ous
Ray

w-
in

ing
is,
een
n-

pal
rder
ary
ave
the

ng
ts o
e ex
ke
t-

im-
om-

and
naly-
uch
ian
s

lu-

s to
eals
of
w.

ptis
ar-
B
re.
late
ble
tic
ce.

in-
uid
d in
tro-

eed
ing
lely
th

i-
64.
s in
There are several practical applications in which sign
cant temperature differences between the surface of the
and the ambient fluid exist. The temperature differen
cause density gradients in the fluid medium, and in prese
of gravitational force, free convection effects become m
important. A situation where both the forced and free c
vection are of comparable order is called mixed convect
Brown [11] studied the effect of the coefficient of volumet
expansion on laminar free convection heat transfer. Var
relations between the physical properties of fluids and t
perature are given by Kays [12]. Grubka and Bobba [
analysed the stretching problem for surface moving w
linear velocity and with variable surface temperature. Te
perature distribution in the steady plane flow of a visc
fluid towards a stretching surface was investigated by
Mahapatra and Gupta [14].

All the above analyses are restricted to the flow of Ne
tonian fluids. However, in reality, most of liquids used
industrial applications particularly in polymer process
applications are of non-Newtonian in nature. In view of th
the study of above boundary layer flow problem has b
further channelised to the non-Newtonian fluid flow. Co
sidering the survey of literature it is noticed that Rajgo
et al. [15] considered the study of visco-elastic second o
fluid flow over a stretching sheet by solving the bound
layer equation numerically. Siddappa and Abel [16] h
presented a similar flow analysis without heat transfer in
flow of non-Newtonian fluid of the type

Walters’ liquid B. Exact analytical solutions of MHD
flow of a visco-elastic Walters’ liquid B past a stretchi
sheet has been presented by Anderson [17]. The effec
internal heat generation on heat transfer phenomena ar
cluded from their analysis. In non-Newtonian fluid flow, li
the one of the Walters’ liquid B, the effect of frictional hea
ing plays a significant role in heat transfer processes.

The non-Newtonian fluids are being considered more
portant and appropriate in technological applications in c

parison with Newtonian fluids. A large class of real fluids
f
-

does not exhibit the linear relationship between stress
rate of strain. Because of non-linear dependence, the a
sis and behaviour of non-Newtonian fluids tends to be m
more complicated and subtle in comparison to Newton
fluids. In the literature there is fairly large number of flow
of Newtonian fluids for which a closed form analytical so
tion is possible.

However, all these researchers restrict their analysi
hydromagnetic flow and heat transfer. None of them d
with much more intricate problem involving the effect
thermal radiation on hydromagnetic visco-elastic fluid flo
Perdikis and Raptis [18], Raptis and Perdikis [19], Ra
[20] and Ckamka [21], which shows that the work is not c
ried out for visco-elastic fluids of the type Walters’ liquid
where the thermal conductivity is a function of temperatu

Keeping this in view, in the present paper, we contemp
to study the Buoyancy effect as well as the effect of varia
thermal conductivity on thermal radiation of hydromagne
flow of a visco-elastic fluid over a moving stretching surfa

2. Mathematical formulation

Consider a steady, laminar free convective flow of an
compressible and electrically conducting visco-elastic fl
over continuously moving stretching surface embedde
a porous medium. Two equal and opposite forces are in
duced alongx-axis so that sheet is stretched with a sp
proportional to the distance from the origin. The result
motion of the otherwise quiescent fluid is thus caused so
by the moving surface. A uniform magnetic field of streng
B0 is imposed alongy-axis. This flow satisfies the rheolog
cal equation of state derived by Beard and Walters in 19

The steady two-dimensional boundary layer equation
usual notation are,

∂u ∂v
∂x
+

∂y
= 0 (1)
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∂u

∂x
+ v

∂u

∂y

= γ
∂2u

∂y2
− ko

{
u

∂3u

∂x∂y2
+ v

∂3u

∂y3
+ ∂u

∂x

∂2u

∂y2
− ∂u

∂y

∂2u

∂x∂y

}

− σB2
ou

ρ
− γ

k′ u + gβ (T − T∞) (2)

Here x and y are respectively the directions along a
perpendicular to the surface,u, v are the velocity compo
nents alongx andy directions, respectively, and other sym
bols have their usual meanings. The last term in Eq. (2) le
to the Buoyancy force.

In deriving these equations, it is assumed, in addition
the usual boundary layer approximations that the contr
tion due to the normal stress is of the same order of ma
tude as the shear stress.

The boundary conditions applicable to the flow probl
are,

u = bx, v = 0 aty = 0

u → 0, uy → 0 asy → ∞ (3)

Eqs. (1) and (2) admit self-similar solution of the form,

u = bxfη(η), v = −√
bγ f (η),

whereη =
√

b

γ
y (4)

where subscriptη denotes the derivative with respect toη.
Clearlyu & v satisfy Eq. (1) identically. Substituting the
new variables in Eq. (2), we have,

f 2
η − ffηη = fηηη − k1

{
2fηfηηη − ffηηηη − f 2

ηη

}
− Mnfη − k2fη + Gr θ (5)

where

k1 = k0b

γ
, k2 = γ

bk′

Mn = σB2
0

bρ
, Gr = gβA

b2l

Similarly boundary conditions (3) takes the form

fη(η) = 1, f (η) = 0 atη = 0

fη(η) → 0, fηη(η) → 0 asη → ∞ (6)

3. Heat transfer analysis

The energy equation in the presence of radiation and
ternal heat generation/absorption for two-dimensional fl
is

u
∂T

∂x
+ v

∂T

∂y

= 1

ρCp

∂

∂y

(
K

∂T

∂y

)
Q 1 ∂qr
+

ρCp

(T − T∞) −
ρCp ∂y

(7)
The thermal conductivityK is assumed to vary linearly wit
temperature and it is of the form:

K = K∞
(
1+ εθ(η)

)
(8)

where

θ(η) = T − T∞
Tw − T∞

and ε = Kw − K∞
K∞

is a small parameter.
By using Rosseland approximation (Brewster in 19

the radiative heat flux is given by

qr = − 4σ ∗

3K∗
∂T 4

∂y
(9)

whereσ ∗ and K∗ are respectively the Stephan–Boltzm
constant and the mean absorption coefficient. We assum
differences within the flow are such thatT 4 can be expresse
as a linear function of temperature. ExpandingT 4 in a Tay-
lor series aboutT∞ and neglecting higher order terms thu

T 4 ∼= 4T 3∞T − 3T 4∞ (10)

The boundary conditions are

T = Tw = T∞ + A

(
x

l

)
aty = 0 PST case

−KTy = Qw = D

(
x

l

)
aty = 0 PHF case

T → T∞ asy → ∞

(11)

Now using Eqs. (8)–(10), Eq. (7) becomes(
1+ εθ(η) + Nr

)
θηη(η) + Pr f (η)θη(η)

− Pr
(
fη(η) − α

)
θ(η) + εθ2

η = 0 (12)

where

Pr = µCp

K∞
, Nr = 16σ ∗T 3∞

3K∗K∞
, α = Q

bρCp

The boundary conditions (11) takes the form:

θ(0) = 1, θ(η) → 0 asη → ∞ PST case

θη(0) = −1, θ(η) → 0 asη → ∞ PHF case (13

Our interest lies in investigation of the flow beha
iour and heat transfer characteristics by analyzing
non-dimensional local shear stress(τw) and Nusselt num
ber (Nu). These non-dimensional parameters are defined

τw = τ ∗

µbx
√

b/γ
= fηη(0), whereτ ∗ = −µ

(
∂u

∂y

)
y=0

Nu = −h

Tw − T∞
Ty =

{
θη(0) PST case

1/θ(0) PHF case
(14)

4. Method of solution

Because of the momentum and the thermal bound
layer equations being nonlinear and coupled, exact s

tions do not seem feasible for complete set of Eqs. (5), (6),
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(12) and (13) and therefore solution must be obtained
merically. In order to solve them, we employ most efficie
shooting technique with fourth order Runge–Kutta integ
tion scheme, which is described in Abel et al. [22].

Selection of an appropriate finite value ofη∞ is most
important aspect in this method. To selectη∞, we begin
with some initial guess value and solve the problem w
some particular set of parameters to obtainfηη(0) andθk(0)

(θk = θη in PST case andθk = θ in PHF case). The solutio
process is repeated with another larger (or smaller, as
case may be) value ofη∞. The values offηη(0) andθk(0)

compared to their respective previous values, if they ag
to about six significant digits, the last value ofη∞ used was
considered the appropriate value for that particular set o
rameters; otherwise the procedure was repeated until fu
changes inη∞ which did not lead to any more change in t
values offηη(0) and θk(0). The initial step size employe
wash = 0.01. The convergence criterion largely depends
fairly good guesses of the initial conditions in the shoot
technique (Chiam [23]), and is based on the relative dif
ence between the current and the previous iterations u
when this difference reaches 10−5 the solution is assumed t
have converged and the iterative process is terminated.

Eqs. (5) and (13) constitute a highly nonlinear coup
boundary value problem of fourth order inf and second or
der in θ respectively, has been reduced to a system of
simultaneous coupled ordinary differential equations by
sumingf = f1, fη = f2, fηη = f3, fηηη = f4, θ = θ1, and
θη = θ2. In order to solve this resultant system, we ne
to have six initial conditions, whilst we have only two in
tial conditions onf and one initial condition onθ . The
third initial condition onf (i.e.,f4(0)) is obtained in terms
of physical parameters by applying the initial conditio
of (6) and (13) (Lawrence and Rao, 1995). Sincef3(0) and
θk(0) (k = 2 in PST case &k = 1 in PHF case) which ar
not prescribed, we start with the initial approximations
f3(0) = α0 andθk(0) = β0. Let α andβ be the correct val
ues off3(0) andθk(0), respectively. Now we integrate th
resultant system of six ordinary differential equations
ing standard fourth order Runge–Kutta method and de
the values off3 and θk at η = η∞ by f3(α0, β0, η∞) and
θk(α0, β0, η∞), respectively. Sincef3 & θk at η = η∞ are
clearly functions ofα and β, they are expanded in Tay
lor series aroundα − α0 andβ − β0, respectively, retaining
only the linear terms. We use the difference quotients
the derivatives appeared in these Taylor series expans
Now, after solving the system of Taylor series expansi
for δα0 = α − α0 andδβ0 = β − β0, we obtain the new esti
matesα1 = α0 + δα0 andβ1 = β0 + δβ0. The entire proces
is repeated starting withf1(0), f2(0), α1, f4(0), θ1(0) and
β1 as initial conditions. Iteration of the whole outline pr
cedure is continued with the latest estimates ofα and β,
until we obtain the computed values of prescribed bou
ary conditions. Finally, we obtainαn = αn−1 + δαn−1, βn =
βn−1 + δβn−1 for n = 1,2,3, . . . as the desired most appro

imate initial values off3(0) and θk(0). With this now all
r

,

.

the six initial conditions become known and so we solve
resultant system of six simultaneous equations by fourth
der Runge–Kutta integration scheme and get the profile
f1, f2, f3, f4, θ1 andθ2 for a particular set of parameters.

5. Results and discussion

In order to test the accuracy of our present method,
have compared our results with that of previous works in
absence of thermal radiation and Buoyancy effects, wh
are found to be excellent in agreement. For different
ues of physical parameters, numerical values of horizo
velocity profilefη(η) are illustrated in Figs. 1–4 and nume
ical values of temperature profileθ(η) for both Prescribed
Surface Temperature (PST Case) and Prescribed Heat
(PHF Case) are illustrated in Figs. 5–10.

The effect of visco-elastic parameter and porosity pa
meter on the horizontal velocity profile in the boundary la
is shown in Fig. 1. It is observed that velocity decrea
in the boundary layer with the increase of distance fr
the boundary. The effect of visco-elastic parameter is to
crease the velocity in the boundary. This result is consis
with the fact that the introduction of tensile stress due
visco-elasticity cause transverse contraction of the boun
layer and hence velocity decreases. This behaviour is
true in presence of porous medium.

Fig. 2 illustrates that the effect of magnetic parame
i.e., the introduction of transverse magnetic field norma
the flow direction have a tendency to create a drag du
Lorentz force which tends to resist the flow and, hence
horizontal velocity boundary layer decreases. This resu
even true for the presence of porous media (k2) and heat
source/sink parameter(α).

The effect of thermal radiation parameter (Nr) on hori-
zontal velocity profile in the presence/absence of magn
parameter (Mn) and also of porous parameter is shown
Fig. 3. It is noticed that effect of thermal radiation param
ter, is to enhance velocity in the boundary layer. From Fi
it is observed that horizontal velocity profile increases w
the increase of Grashof number (Gr). This demonstrates th
role of convection current as to increase the horizontal
locity component. This result is even true for the prese
of porosity parameter. In this case, there is velocity ov
shoot (i.e., the velocity at a certain value ofη exceeds the
velocity at the edge of the boundary layer) in the bound
layer region and Buoyancy force act like a favourable p
sure gradient and accelerates the fluid within the boun
layer which is similar to the result obtained by Takhar et
[24] for viscous flows.

The effect of Magnetic parameter on temperature pro
for both PST and PHF cases in presence/absence of po
parameter and heat source/sink parameter is shown in F
and 6, respectively. It is observed that the effect of magn
parameter is to increase the temperature profile in the bo

ary layer. The Lorentz force has the tendency to slow down
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Fig. 1. Variation offη(η) vs.η for different values of visco-elastic parameterk1, porosity parameterk2 and thermal conductivity parameterε whenPr = 1.0,
Mn = 0.0, α = 0.0, Nr = 0.0, andGr = 0.0.

Fig. 2. Variation offη(η) vs. η for different values of magnetic parameterMn, porosity parameterk2 and heat source/sink parameterα when Pr = 1.0,

k1 = 0.1, ε = 0.1, Nr = 1.0, andGr = 0.2.
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Fig. 3. Variation offη(η) vs. η for different values of thermal radiation parameterNr, magnetic parameterMn and porosity parameterk2 whenPr = 1.0,
k1 = 0.1, Gr = 0.2, α = 0.5, andε = 0.0.

Fig. 4. Variation offη(η) vs. η for different values of Grashof numberGr, porosity parameterk2 and thermal conductivity parameterε when Pr = 1.0,

Mn = 0.0, α = 0.5, Nr = 1.0, andk1 = 0.1.
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Fig. 5. Variation ofθ(η) vs.η for different values of magnetic parameterMn, porosity parameterk2 and heat source/sink parameterα whenPr = 1.0, k1 = 0.1,
ε = 0.1, Nr = 0.0, andGr = 0.2 in PST case.

Fig. 6. Variation ofθ(η) vs.η for different values of magnetic parameterMn, porosity parameterk2 and heat source/sink parameterα whenPr = 1.0, k1 = 0.1,

ε = 0.1, Nr = 0.0, andGr = 0.2 in PHF case.
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Fig. 7. Variation ofθ(η) vs. η for different values of thermal radiation parameterNr, magnetic parameterMn and thermal conductivity parameterε when
Pr = 1.0, k1 = 0.1, Gr = 0.2, α = 0.5, andk2 = 1.0 in PST case.

Fig. 8. Variation ofθ(η) vs. η for different values of thermal radiation parameterNr, magnetic parameterMn and thermal conductivity parameterε when

Pr = 1.0, k1 = 0.1, k2 = 1.0, α = 0.5, andGr = 0.2 in PHF case.
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Fig. 9. Variation ofθ(η) vs. η for different values of heat source/sink parameterα, porosity parameterk2 and Grashof numberGr whenPr = 1.0, k1 = 0.1,
Mn = 0.5, Nr = 1.0, andε = 0.1.
Fig. 10. Variation ofθ(η) vs.η for different values of Prandtl numberPr and porosity parameterk2 whenk1 = 0.1, Mn = 0.5, Nr = 1.0,α = 0.5, andGr = 0.2.
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Table 1
Values of Skin friction coefficient and Heat transfer coefficient for different values of non-dimensional physical parameters in PST case

k1 k2 Pr Mn α Gr Nr ε PST case

fηη(0) θη(0)

0.1 0.0 1.0 0.0 −0.5 0.5 1.0 0.0 −0.73017700 −0.87268680
0.0 −1.06515444 −0.84444766

−0.5 −1.42888733 −0.63990226

1.0 0.5 −1.27583186 −0.82389936
0.0 −1.52855339 −0.79039331
0.5 −1.82960981 −0.67630871

0.0 0.5 0.1 −0.72122243 −0.84044242
0.0 −1.06515444 −0.81561844

−0.5 −1.43617297 −0.61082164

1.0 0.5 −1.27364622 −0.79617087
0.0 −1.52855192 −0.76297405

−0.5 −1.80395270 −0.71534442

0.1 1.0 1.0 0.5 −0.5 0.2 0.0 0.0 −1.63318940 −1.17935033
1.0 −1.61918692 −0.78130683
2.0 −1.61125621 −0.60723765
3.0 −1.06587194 −0.50393283

0.0 0.1 −1.63171020 −1.10289975
1.0 −1.61891582 −0.75837478
2.0 −1.61167500 −0.60049479
3.0 −1.60673269 −0.50171570

0.1 0.0 1.0 0.5 0.2 0.2 1.0 0.0 −1.15764074 −0.40863490
0.0 −1.18520669 −0.59182635

−0.5 −1.20744748 −0.82780966

0.2 0.1 −1.20381049 −0.56637338
0.0 −1.18403381 −0.57061521

−0.5 −1.20596476 −0.79915255

0.1 1.0 1.0 0.5 −0.5 0.2 1.0 0.0 −1.61918692 −0.78130683
2.0 −1.63318940 −1.17935033
3.0 −1.64134846 −1.49009886
4.0 −1.64709652 −1.75542170

1.0 0.1 −1.61891582 −0.75837478
2.0 −1.63250413 −1.13991460
3.0 −1.64066945 −1.44016386
4.0 −1.64642999 −1.69659872
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the motion of the fluid in the boundary layer and to incre
its temperature profile. Also the effect on the flow and th
mal fields become more so as the strength of the mag
field increases. The effect of magnetic parameter is to
crease the wall temperature gradient in PST case and
temperature in PHF case.

Figs. 7 and 8 illustrate the effect of thermal radiati
on temperature profile in the boundary layer for both P
and PHF cases, respectively. It is observed that the incr
in thermal radiation parameter produces a significant
crease in the thickness of the thermal boundary laye
the fluid and so as the temperature profile increases in p
ence/absence of thermal conductivity parameter(ε).

The effect of heat source/sink parameter on tempera

profile in the boundary layer for both PST and PHF cases
l

e

-

is shown in Fig. 9(a) and (b), respectively. The direction
heat flow depends both on temperature difference(Tw −T∞)

and the temperature gradientθη(0). However in the hea
sources,Q and(Tw − T∞) have the same sign since−θη(0)

is positive. To interpret the heat transfer result physica
we discuss the result of positiveα and negativeα sepa-
rately. For positiveα, we have a heat source in the bound
layer whenTw < T∞ and heat sink whenTw > T∞. Physi-
cally, these correspond, respectively, recombination and
sociation within the boundary layer. For the case of coo
wall (Tw < T∞), there is heat transfer from the fluid to th
wall even without heat source. The presence of heat so
(α > 0) will further increase the heat flow to the wall.

Whenα is negative, this indicates a heat source forTw >
T∞ and a heat sink forTw < T∞. This corresponds to com-
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Table 2
Values of Skin friction coefficient and Heat transfer coefficient for different values of non-dimensional physical parameters in PHF case

k1 k2 Pr Mn α Gr Nr ε PST case

fηη(0) θη(0)

0.1 0.0 1.0 0.0 −0.5 0.5 1.0 0.0 −0.73873634 1.13027391
0.0 −1.06515444 1.18321148

−0.5 −1.47604730 1.21985682

1.0 0.5 −1.22654534 1.20342956
0.0 −1.52855338 1.26305452
0.5 −1.87352301 1.30885021

0.0 0.5 0.1 −0.72277264 1.17372434
0.0 −1.06515444 1.23467515

−0.5 −1.49131624 1.28940562

1.0 0.5 −1.21097982 1.25337939
0.0 −1.52855192 1.32279955

−0.5 −1.94641306 1.47396730

0.1 1.0 1.0 0.5 −0.5 0.2 0.0 0.0 −1.64586137 0.84824379
1.0 −1.59581870 1.25912242
2.0 −1.55604548 1.57267369
3.0 −1.52326262 1.82714364

0.0 0.1 −1.64014616 0.90162562
1.0 −1.58836540 1.32024605
2.0 −1.54891640 1.63080015
3.0 −1.51605757 1.88470677

0.1 0.0 1.0 0.5 0.1 0.2 1.0 0.1 −1.09717466 1.75949365
0.0 −1.11345074 1.65380302

−0.5 −1.17905916 1.25083432

1.0 0.1 −1.50127773 1.98569943
0.0 −1.52473038 1.80881940

−0.5 −1.58836540 1.32024605

0.1 1.0 1.0 0.5 −0.5 0.2 1.0 0.0 −1.59581870 1.25912242
2.0 −1.64586137 0.84824379
3.0 −1.66584644 0.67230399
4.0 −1.67670242 0.57085834

1.0 0.1 −1.58836540 1.32024605
2.0 −1.64305722 0.87448201
3.0 −1.66430361 0.68862489
4.0 −1.67565412 0.58251981
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bustion and an endothermic chemical reaction. For the
of heated wall (Tw > T∞), the presence of a heat sour
(α < 0) creates a layer of hot fluid adjacent to the surf
and therefore the heat from the wall decreases. For co
wall case (Tw < T∞), the presence of heat sink(α < 0) blan-
kets the surface with a layer of cool fluid, and therefore h
flow into the surface decreases. This result is similar to
result obtained by Acharya et al. [25].

Fig. 10(a) and (b) illustrate the effect of Prandtl numb
(Pr) on temperature profile in the boundary for both P
and PHF cases, respectively. It is observed that the effe
Prandtl number is to decrease the temperature profile in
boundary layer.

The values of Skin friction coefficientfηη(0) and Nusselt
numberNu, for various values of non-dimensional physic
parameters are recorded in Tables 1 and 2 for both PST

PHF cases, respectively. It was found that the skin friction
coefficient increased due to increase in the heat absor
coefficient, and the effect of Grashof number is to decre
the Nusselt number in both cases and is even true in pres
of porous medium.

6. Conclusion

The governing equations for a steady, laminar free c
vective flow of an incompressible and electrically condu
ing visco-elastic fluid over continuously moving stretchi
surface embedded in a porous medium was formulated.
resulting partial differential equations are transformed i
ordinary differential equations by using similarity transfo
mations. Numerical evaluations were performed and gra
cal results were obtained to illustrate the details of flow

heat transfer characteristics and their dependence on some
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of the physical parameters. It was found that when Gras
number increased, the fluid velocity increased. However
observed that the effect of heat source in the boundary l
generates energy, which causes the temperature to incr
while the presence of heat absorption effects caused re
tions in the fluid temperature, which results in decreas
the fluid velocity. It is also observed that increase in ther
radiation parameter produces a significant increase in
thickness of the thermal boundary layer of the fluid and
as the temperature increases in presence/absence of th
conductivity parameter. Analysis of the tables shows that
magnitude of surface velocity gradient is found to incre
with the viscoelastic parameterk1, in the absence of Buoy
ancy force and the effect of Grashof number is to decre
the Nusselt number in both cases and is even true in pres
of porous medium.
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